Deformable image registration and interobserver variation in contour propagation for radiation therapy planning

نویسندگان

  • Adam C. Riegel
  • Jeffrey G. Antone
  • Honglai Zhang
  • Prachi Jain
  • Jagdeep Raince
  • Anthony Rea
  • Angelo M. Bergamo
  • Ajay Kapur
  • Louis Potters
چکیده

Deformable image registration (DIR) and interobserver variation inevitably intro-duce uncertainty into the treatment planning process. The purpose of the current work was to measure deformable image registration (DIR) errors and interobserver variability for regions of interest (ROIs) in the head and neck and pelvic regions. Measured uncertainties were combined to examine planning margin adequacy for contours propagated for adaptive therapy and to assess the trade-off of DIR and interobserver uncertainty in atlas-based automatic segmentation. Two experi-enced dosimetrists retrospectively contoured brainstem, spinal cord, anterior oral cavity, larynx, right and left parotids, optic nerves, and eyes on the planning CT (CT1) and attenuation-correction CT of diagnostic PET/CT (CT2) for 30 patients who received radiation therapy for head and neck cancer. Two senior radiation oncology residents retrospectively contoured prostate, bladder, and rectum on the postseed-implant CT (CT1) and planning CT (CT2) for 20 patients who received radiation therapy for prostate cancer. Interobserver variation was measured by calculating mean Hausdorff distances between the two observers' contours. CT2 was deformably registered to CT1 via commercially available multipass B-spline DIR. CT2 contours were propagated and compared with CT1 contours via mean Hausdorff distances. These values were summed in quadrature with interobserver variation for margin analysis and compared with interobserver variation for sta-tistical significance using two-tailed t-tests for independent samples (α = 0.05). Combined uncertainty ranged from 1.5-5.8 mm for head and neck structures and 3.1-3.7 mm for pelvic structures. Conventional 5 mm margins may not be adequate to cover this additional uncertainty. DIR uncertainty was significantly less than interobserver variation for four head and neck and one pelvic ROI. DIR uncertainty was not significantly different than interobserver variation for four head and neck and one pelvic ROI. DIR uncertainty was significantly greater than interobserver variation for two head and neck and one pelvic ROI. The introduction of DIR errors may offset any reduction in interobserver variation by using atlas-based automatic segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical enhanced non‐rigid registration for target volume correction and propagation for adaptive external beam radiotherapy of carcinoma of the prostate

Volumes change during fractionated radiotherapy (RT). We investigate a tool based on the Hierarchical Enhanced Registration Algorithm (HERA) to project a 3D segmentation set of the prostate into the subsequent imaging sets at any time point during RT by using intensity-based image registration techniques. Sequential CT sets during RT at 15, 30, 45, and 60 Gy of two patients were used. Five expe...

متن کامل

Evaluation of Deformable Image Registration-Based Contour Propagation From Planning CT to Cone-Beam CT

PURPOSE We evaluated the performance of organ contour propagation from a planning computed tomography to cone-beam computed tomography with deformable image registration by comparing contours to manual contouring. MATERIALS AND METHODS Sixteen patients were retrospectively identified based on showing considerable physical change throughout the course of treatment. Multiple organs in the 3 reg...

متن کامل

Contour Propagation Using Feature-Based Deformable Registration for Lung Cancer

Accurate target delineation of CT image is a critical step in radiotherapy treatment planning. This paper describes a novel strategy for automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour i...

متن کامل

Deformable image registration of CT images for automatic contour propagation in radiation therapy.

Radiotherapy treatment plan may be replanned due the changes of tumors and organs at risk (OARs) during the treatment. Deformable image registration (DIR) based Computed Tomography (CT) contour propagation in the routine clinical setting is expected to reduce time needed for necessary manual tumors and OARs delineations and increase the efficiency of replanning. In this study, a DIR method was ...

متن کامل

Performance validation of deformable image registration in the pelvic region

Patients undergoing radiotherapy will inevitably show anatomical changes during the course of treatment. These can be weight loss, tumour shrinkage, and organ motion or filling changes. For advanced and adaptive radiotherapy (ART) information about anatomical changes must be extracted from repeated images in order to be able to evaluate and manage these changes. Deformable image registration (D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016